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I. Code Description

A 3D Discontinuous Galerkin (DG) finite element method1 is used to discretize the compressible Navier-
Stokes (CNS) equations. The solver can handle hybrid mixed element meshes (tetrahedra,pyramids,prisms,
and hexahedra), curved elements, and incorporates both p-enrichment and h-refinement capabilities using
non-conforming elements (hanging nodes). Additional equations that can be solved include a PDE-based
artificial viscosity equation and the Spalart-Allmaras turbulence model (negative-SA variant).2 The implicit
solver uses a Newton-Raphson method to solve the non-linear set of equations. These equations are linearized
to obtain the full Jacobian. The linear system is solved using a flexible-GMRES3 (fGMRES) method.
To further improve convergence of fGMRES a preconditioner can be applied to the system of equations.
Preconditioners that have been implemented include Jacobi relaxation, Gauss-Seidel relaxation, line implicit
Jacobi, and ILU(0). The solver is parallelized using MPI.

II. Case Summary

This simulation was solved explicitly using Runge Kutta 4 for 100,000 time steps on 1024 processors.
These simulations were performed on the NCAR-Wyoming supercomputer (NWSC) Yellowstone which is
a 1.5 Petaflops high performance IBM iDataPlex architecture featuring 72,576 Intel Sandybridge cores (2.6
GHz Intel E5-2670 processors configured in dual socket nodes) and 144.6 TB of memory. The Taubench for
this machine is 8.4 seconds.

III. Meshes

A structured cartesian grid is created for this problem. The domain is from [−π, π] and periodic boundary
conditions are used on all boundaries. Two grids are used: one with 323 elements and another with 643

elements.

IV. Results

Eight simulations varying the basis polynomial degree and grid resolution were performed for the Taylor-
Green vortex problem. Polynomial degrees of 1,2,3, and 4 were simulated along with two grids (n = 323

and n = 643). Figure 1 plots the Kinetic energy for all eight cases along with the pseudo-spectral kinetic
energy. Figure 2 plots the dissipation rate calculated by taking the derivative of kinetic energy with respect
to time (using a first order finite difference) along with the pseudo-spectral dissipation rate. Figure 3 plots
the dissipation rate calculated using

ε1 =
2µ

ρ0Ω

∫
Ω

Sd : SddΩ
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along with the pseudo-spectral dissipation rate. Figure 4 plots the enstrophy along with the pseudo-spectral
enstrophy. Figure 5 shows the L∞ error for the dissipation rate versus work units. Figure 6 shows iso-contours
of vorticity magnitude on the x

L = −π face at t
tc

= 8.
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Figure 1. Kinetic energy for the Taylor-Green vortex at Re = 1600
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Figure 2. Dissipation rate ∂Ek
∂t

for the Taylor-Green vortex at Re = 1600
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Figure 3. Dissipation rate ε1 for the Taylor-Green vortex at Re = 1600
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Figure 4. Enstrophy E for the Taylor-Green vortex at Re = 1600
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Figure 5. Dissipation error vs work units for the Taylor-Green vortex at Re = 1600
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Figure 6. Iso-Contours of vorticity magnitude L
V0
|ω| = 15, 10, 20, 30 at t

tc
= 8 and x

L
= −π for the Taylor-Green

vortex at Re = 1600, DG p = 4, n = 643 (red), pseudo-spectral (black)
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